
京东如何基于容器
打造高性能及效率的大数据平台

Zhen Fan fanzhen@jd.com
Weiting Chen weiting.chen@intel.com



4

INTEL NOTICE & DISCLAIMER
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is 
granted by this document.
Intel disclaims all express and implied warranties, including without limitation, the implied 
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as 
any warranty arising from course of performance, course of dealing, or usage in trade.
This document contains information on products, services and/or processes in 
development. All information provided here is subject to change without notice. Contact your 
Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.
The products and services described may contain defects or errors known as errata which may 
cause deviations from published specifications. Current characterized errata are available on 
request.
Copies of documents which have an order number and are referenced in this document may 
be obtained by calling 1-800-548-4725 or by visiting www.intel.com/design/literature.htm.
Intel, the Intel logo, Intel® are trademarks of Intel Corporation in the U.S. and/or other countries. 
*Other names and brands may be claimed as the property of others

Copyright © 2018 Intel Corporation.



5

AGENDA
BACKGROUND
SPARK ON KUBERNETES
- Why use Spark-on-K8s
- How it works
- Current Status & Issues
JD.COM CASE STUDY
- JD.com’s MoonShot
- Network Choice
- Storage Choice
SUMMARY



BACKGROUND

6



7

ABOUT SPARK-ON-KUBERNETES
• https://github.com/apache-spark-on-k8s/spark
• Spark* on Kubernetes*(K8s) is a new project proposed by the 

companies including Bloomberg, Google, Intel, Palantir, Pepperdata, 
and Red Hat.

• The goal is to bring native support for Spark to use Kubernetes as a 
cluster manager like Spark Standalone, YARN*, or Mesos*.

• The feature is planning to be put into Spark 2.3.0 release(SPARK-
18278).



8

WHY JD.COM CHOOSE SPARK-ON-K8S

Customers are asking to use an unified cloud platform to manage their 
applications. Based on Kubernetes*, we can ease to set up a platform to 
support CPU, GPU, as well as FPGA resources for Big Data/AI 
workloads.

Heterogeneous Computing
CPU + GPU + FPGA



9

HETEROGENEOUS CLOUD SOLUTION

Kubelet

Servers Servers ServersServers

KubeletKubeletKubelet*

Spark

TensorFlow*/
Caffe*

Mllib* Spark*
SQL

CPU CPU CPU CPU CPU CPU FPGA FPGA CPU CPU GPU GPU Storage

BigDL* Spark
Streaming

HARDWARE
RESOURCE

CONTAINER
CLUSTER

COMPUTING
FRAMEWOR
K

DockerDockerDockerDocker*

Web Service Command LineUSER
INTERFACE Jupyter*/Zeppelin*

Storm*
/Flink*

Storage

Hadoop*



SPARK ON KUBERNETES

10



11

SPARK ON DOCKER SOLUTIONS
• Solution1 - Spark* Standalone on Docker*

- Run Spark standalone cluster in Docker.
- Two-tiers resource allocation(K8s->Spark Cluster->Spark Applications).
- Less efforts to migrate existing architecture into container environment.

• Solution2 - Spark on Kubernetes*
- Use native way to run Spark on Kubernetes like Spark Standalone, YARN, or Mesos.
- Single tier resource allocation(K8s->Spark Applications) for higher utilization.
- Must re-write the entire logical program for resource allocation via K8s.



12

SOLUTION1 - SPARK STANDALONE ON DOCKER
Kubelet*

Kubelet

Kubelet

Kubelet

Spark-
Submit
App1

Spark-
Submit 
App2

Kubernetes* 
Master

Spark Slave Pod

Spark Slave Pod

Spark Slave Pod

Spark Slave Pod

Spark Master

App1 Executor

App1 Executor

App1 Executor

App2 ExecutorApp2 Executor

App2 Executor
Step2

Step3

Step1

Step4

Step2



13

SOLUTION2 - SPARK ON KUBERNETES
Kubelet*

Kubelet

Kubelet

Kubelet

Spark-
Submit
App1

Spark-
Submit 
App2

Kubernetes 
Master

App1 Driver Pod

App1 Executor 
Pod

App1 Executor 
Pod

App2 Executor 
Pod

Step4

Step1

Step2

Step3

App2 Driver PodApp2 Executor 
Pod

Step4



14

HOW TO USE SPARK ON K8S
# bin/spark-submit \
--deploy-mode cluster \
--class org.apache.spark.examples.SparkPi \
--master k8s://http://127.0.0.1:8080 \
--kubernetes-namespace default \
--conf spark.executor.instances=5 \
--conf spark.executor.cores=4 \
--conf spark.executor.memory=4g \
--conf spark.app.name=spark-pi \
--conf spark.kubernetes.driver.docker.image=localhost:5000/spark-driver \
--conf spark.kubernetes.executor.docker.image=localhost:5000/spark-executor \
--conf spark.kubernetes.initcontainer.docker.image=localhost:5000/spark-init \
--conf spark.kubernetes.resourceStagingServer.uri=http://$ip:31000 \
hdfs://examples/jars/spark-examples_2.11-2.1.0-k8s-0.1.0-SNAPSHOT.jar 



15

KEY FEATURES
• Support Cluster Mode
• Client Mode Support is under reviewing.
• Support File Staging in local, HDFS, or running a File Stage Server 

container.
• Support Scala, Java, and PySpark.
• Support Static and Dynamic Allocation for Executors.
• Support running HDFS inside K8s or externally.
• Support for Kubernetes 1.6 - 1.7
• Pre-built docker images



16

DATA PROCESSING MODEL

Host

Virtual Cluster

Docker1 Docker2

Computing 
Task HDFS

PATTERN 1:
Internal HDFS*

Host

Virtual 
Cluster

Docker1

Computing 
Task

Object 
Store

PATTERN 3:
Object Store

Host
Use HDFS as file sharing 
server. HDFS runs in the same 
host to give elasticity to 
add/reduce compute nodes by 
request.

Please refer to Spark and 
HDFS.

Launch a File Staging Server to 
share data between nodes.
Input and Output data can put in 
an object store 
Streaming data directly via 
object level storage like 
Amazon S3, Swift. 

Virtual 
Cluster

Docker1

Computing 
Task

HDFS

PATTERN 2:
External HDFS

Use HDFS as file sharing 
server.
HDFS runs outside in a long-
running cluster to make sure 
data is persisted. 

Please refer to PR-350

Host Host

The design rule is based on 
“whether the data must be  
persisted”.

spark.local.dir:
For Spark Data Shuffling.
Use Ephemeral Volume.
Now it uses docker-storage 
with diff. storage backend.
EmptyDir is WIP.

File Staging Server:
For sharing data such as Jar 
or dependence file between 
computing nodes.
Now it uses docker-storage.
Local Storage support in 
Persist Volume(PV) is WIP.

Storage Plan
for Spark* on K8s*



17

STORAGE SUPPORT
• Spark* Shuffle: Uses Ephemeral Volumes
• Docker* Storage: Use devicemapper
• Shared Volumes:
1. #439 Use EmptyDir for File Staging to share jar file.
2. Local in Spark Executors(Docker Storage)
3. Remote HDFS*
4. Create a Staging Server Container

• Persistent Volumes(Ongoing): 
1. #306 Use PV
2. Input/Output Data
3. Remote HDFS
4. Remote Object Storage such as GlusterFS*

Spark 
Executor

Docker
Storage

File 
Staging 
Server

• Spark Shuffle
• File Staging

HDFS/
GlusterF

S

• File Staging

• File Staging
• Input Data
• Output Data



18

STATIC RESOURCE ALLOCATION

Kubelet

Kubelet

Kubelet

Kubelet

Spark-
Submit
App1

Kubernetes
Master

App1 Driver Pod

App1 Executor 
Pod

App1 Executor 
Pod

docker
storage

The resources are allocated in the beginning and cannot change during the executors are running.
Static resource allocation uses local storage(docker-storage) for data shuffle.

docker
storage

Step4

Step1

Step2

Step3

App1 Executor 
Pod

docker
storage

Use EmptyDir in K8s for this temporary data shuffle.

Step4

Step4



19

DYNAMIC RESOURCE ALLOCATION

Kubelet

Kubelet

Kubelet

Kubelet

Spark-
Submit
App1

Kubernetes
Master

App1 Driver Pod

App1 Executor 
Pod

App1 Executor 
Pod

Step4

Step1

Step2

Step3
Shuffle Service 

Pod

Shuffle Service 
Pod

App1 Executor 
Pod

Shuffle Service 
Pod

The resources are allocated in the beginning, but applications can change the resource in run time.
Dynamic resource allocation uses shuffle service container for data shuffle.

There are two implementations:
1st is to run shuffle service in a pod.
2nd is to run shuffle service as a container with a 
executor. 

Step4

Step4



20

CURRENT STATUS & ISSUES
• Spark* Shell for Client Mode hasn’t verified yet.
• Spark Cluster for Long Time Job
• Data Locality Support
• Storage Backend Support
• Container Launch Time may take too long
• Performance Issues
• Reliability



JD.COM CASE STUDY

21



22

JD.com (NASDAQ: JD)
• Founded in 2004 in Beijing by CEO, Richard Liu.
• Largest online retailer in China
• Member of the Fortune Global 500
• Business including e-commerce, Internet finance, logistics, cloud 

computing and smart technology
• Technology-driven company, ABC strategy
• Joybuy.com for US customers - affiliate to JD.com



23

JD.com MOONSHOT
• JD has used K8s* as cloud infrastructure management for several years.
• JD would like to use K8s to manage all the computing resources including 

CPU, GPU, FPGA, …etc.
• Target for all AI workloads; Using the same cluster for training/inference.
• Across multiple Machine Learning framework including Caffe, 

TensorFlow, XGBoost, MXNet, BigDL …etc.
• To optimize workloads for different resource allocation.
• Multi-tenancy support by different user accounts and resource pool.

Reference: https://mp.weixin.qq.com/s?__biz=MzA5Nzc2NDAxMg%3D%3D&mid=2649864623&idx=1&sn=f476db89b3d0ec580e8a63ff78144a37



24

MOONSHOT ARCHITECTURE

Infrastructure

Container
Cluster

Computing
Engine

Applications

Management 
Center

Authority
Mgmt.

Task
Mgmt.

Procedure 
Mgmt.

Monitor
Center

Logging 
Center

Image 
Recognition NLP Security 

Solutions Finance Public Cloud

TensorFlow* Caffe* MXNet* XGBoost
*

Spark

BigDL MLlib Spark 
SQL

Strea
ming

DeepLe
arning4j

Docker* + Kubernetes*

CPU GPU FPGA
Ethernet InfiniBand Omini-

Path

File SystemNetwork

SSD HDD



NETWORK CHOICE by JD.com

25



26

TYPES OF CONTAINER NETWORK
• Bridge 

Bridge is the default network(docker0) in Docker*. Linux bridge provides a host internal 
network for each host and leverages iptables for NAT and port mapping. It is simple and 
easy, but with bad performance.

• Host
Container shares its network namespace with the host. This way provides high performance 
without NAT support, but limits with port conflict issue.

• Overlays
Overlays use networking tunnels(such as VXLAN) to communicate across hosts. Overlay 
network provides the capability to separate the network by projects.

• Underlays
Underlays expose host interfaces directly to containers running on the host. It supports many 
popular drivers like MACvlan, IPvlan, …etc. Some other ways via Underlay network are 
Direct Routing, Fan Networking, Point-to-Point.



27

NETWORK SOLUTIONS
• Flannel*

A simple and easy to configure layer 3 network fabric designed for K8s. It runs flanneld on 
each host to allocate subnet and uses etcd to store network configuration. Flannel supports 
several backends including VXLAN, host-gw, UDP, …etc.

• Calico* 
An approach to virtual networking and network security for containers, VMs, and bare metal 
services, which provides a rich set of security enforcement capabilities running on top of a 
highly scalable and efficient virtual network fabric. Calico uses BGP to set up the network 
and it also supports IPIP methods to build up a tunnel network.

• Weave*
Weave creates a virtual network that connects Docker containers across multiple hosts and 
enables their automatic discovery.

• OpenVSwitch*
• Others



28

Why CALICO?
• No overlay required

Little overhead comparing to bare metal. Sometimes, overlay network(encapsulating packets inside an 
extra IP header) is an option, not MUST.

• Simple & Scalable
The architecture is simple, the deployment is simple as well. We can easily deploy thousands of nodes 
in k8s by using yaml file.

• Policy-driven network security
In many scenarios of JD.com, for example, multi-tenancy is necessary to make network isolation. 
Calico enables developers and operators to easily define network policy with fine granularity such as 
allowed or blocked connections.

• Widely deployed, and proven at scale
We leverage the experience from other big companies who share their issues in the community. These 
experience are very valuable for us at the very beginning of moonshot. Fortunately, Calico has passed 
the verified in our production environment.



29

NETWORK PERFORMANCE RESULT

No. Scenario Concurrency 
# Total Time(s) Request 

per Second
Waiting

Time(ms)
1 Client -> Nginx 50 50.044 19982 0.05

2 Weave:
Client -> iptables -> Weave -> Pod 50 132.839 7527 0.133

3 Calico with IPIP:
Client -> iptables -> Calico -> Pod 50 111.136 8998 0.111

4 Calico with BGP:
Client -> iptables -> Calico -> Pod 50 59.218 16886 0.059

All scenarios use ab command to connect to nginx* server with different IP address.
“ab -n 1000000 -c 100 -H"Host: nginx.jd.local" 172.20.141.72:80/index.html “

JD.com decides to pick up Calico since Calico provides better performance than Weave and Calico can 
still provide tunnel method(via IPIP) to set up network.



STORAGE CHOICE by JD.com

30



31

STORAGE CHOICES
• Separate Compute and Storage cluster
• Use Kubernetes to allocate resources for compute
• Use Stand-alone HDFS Cluster for data persistent
• Data locality depends on the workload types



32

DATA LOCALITY ISSUE
• In cloud environment, compute and storage resource are separated. 

This could highlight data locality issue with performance drop.
• Some possible solutions can help to resolve data locality issues
• Choose right workloads, most workloads only need to read data and 

write data at beginning and end phase. 
• HDFS* on Kubernetes
• Alluxio*



33

DATA LOCALITY IMPACT
Workloads Types Locality Datasize Cluster Size Network Execution Time Notes

Terasort IO Local 320GB 5 1Gb 2119.926sec 1x

Terasort IO Remote 320GB 5 Spark + 
3 Hadoop 1Gb 4212.029sec 1.98x

Terasort IO Local 320GB 5 10Gb 500.198sec 1x

Terasort IO Remote 320GB 5 Spark + 
3 Hadoop 10Gb 548.549sec 1.10x

Kmeans CPU Local 240GB 5 10Gb 1156.235sec 1x

Kmeans CPU Remote 240GB 5 Spark + 
3 Hadoop 10Gb 1219.138sec 1.05x

Note1: This testing is using 5-nodes bare metal cluster.
Note2: 4 SATA SSD per Spark and Hadoop node
Note3: Performance may impact in different configuration including the number of disk, network bandwidth, as well as different platform. 



34

SPARK PERFORMANCE COMPARISON
Task# Remote in K8s

(sec)
Remote in Yarn

(sec)
Local in Yarn

(sec)
1 - k8s/yarn local

(X)
1 - k8s/yarn remote

(X)
01. gdm_m12_pop_ord_sum_101_spark 424.33 600.33 398.33 -6.53% 29.32%

02. gdm_m12_pop_ord_sum_102_spark 996.00 1188.00 1155.67 13.82% 16.16%

03. odm_waybill_ord_sum_spark 420.67 517.33 391.33 -7.50% 18.69%

04. odm_jdorders_waybill_spark 399.67 573.67 413.33 3.31% 30.33%

05. tmp_d05_pre_sorting_da_spark 525.33 672.67 489.33 -7.36% 21.90%

06. odm_ord_det_basic_spark 659.67 1313.33 647.67 -1.85% 49.77%

08. fdm_bd_waybill_v_waybill_c_chain_spark 2224.33 2259.00 1717.67 -29.5% 1.53%

10. odm_m04_ord_amount_det_da_spark 1013.33 2019.00 958.00 -5.78% 49.81%

11. odm_product_pop_product_spark 1539.33 3540.33 1351.33 -13.91% 56.52%

Run 3 times per task and list result in average.
Separate compute and storage bring some performance loss compared to yarn local.
Spark on K8s(remote) provide better performance comparing to yarn remote. 



SUMMARY

35



36

SUMMARY
• Spark* on K8s* provides a cloud native way to run Spark on Cloud 

which not only can get better resource utilization but also integrate with 
more big data services.

• JD.com’s Moon Shot uses K8s to create a heterogeneous cloud 
infrastructure, it can support both CPU and GPU for their AI workloads.

• Spark on K8s is still under developing and there are many 
issues/features are waiting to be fixed/implemented.



37

FUTURE WORKS
• Intel RDT integration

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

• Intel DPDK for Software Define Network(SDN)
• Intel HW Features Enabling
• Spark* on K8s* Feature Support
• Enable more customers to use Spark on K8s



38


